Shot Peening Cuts Drill Pipe Failures

Shop Tests Indicate Life of Equipment Is Extended by Four Times

By RALPH IRVING

General Manager, Vapor Honing Company, Houston

Here's a typical rig for sand blasting or shot peening tubular goods. The process here involves peening outside ends of drill pipe. Air-jetted shot is fed from chamber on extreme right through rubber hose and against rotating pipe. Used shot is trapped by casing segment surrounding pipe and dumped into bucket below.

A SHOT-peened joint of drill pipe, compared to a similar joint which has not been shot peened, will withstand more than four times as many cycles of stress before it fails. This fact is quite important during times of tubular goods scarcity plus additional demands placed upon drill pipes in operations below 13,000 feet. The process of shot peening drill pipe includes blasting the inside surface with round steel shot until dangerous forming tensional stresses are relieved, the surface has been dented and worked so as to interrupt cracks and ridges which formerly provided failure paths, and the interior surface is placed in the favorable condition of compression.

Sand Blast Before Shot Peening

The objective in sand blasting is to remove mill scale. Sand and grit perform as abrasives to cut away mill scale faster and cleaner than do the round steel shot employed for peening. Blasting abrasives are often credited for their resistance to fragmentation so they can be re-used many times. However, the best abrasive to clean tubular goods is a sand shot because it is definitely fragmentary. Following the initial abrasion and contact, the fragmented particles ricochet and hit the surface again to remove the mill scale from small cracks and pits.

The round steel peening shot, which are of the optimum size to flatten out, indent and interrupt the surface ridges, crevices and pits, will knock off much of the mill scale but they are too large to get down into and clean out the cracks and pits. Actually, they hammer the remaining scale into the base metal. This remaining scale will weather or spall-off and break the continuity of and squander the peening result. Even though sand produces some peening effect and shot does some cleaning, the desired end result is more rapidly and economically attained if:

- Mill scale is first removed with abrasive sand.
- The clean metal surface is peened with optimum sized round steel shot.

Recognized Industrial Tool

Shot peening is standard practice on many automobile and airplane parts. For years the front coil springs on a popular line of automobiles have been shot peened; they then take more than four times as many cycles of compression before average failure. Improved methods of peening, according to research reports, forecast an increase in that performance to the order of ten. Other familiar steel parts show the following life improvement after shot peening:

- welded joints 310 percent
- steering knuckle 475 percent
- engine crankshafts 900 percent
- gun extractors 900 percent
- leaf springs 1300 percent

Desirable General Corrosion

The actual weight loss of steel in corrosive environments is still so small that if that loss is encouraged to take place as general, evenly distributed corrosion, drill pipe or tubing can last ten times as long before failure as it will if the corrosion is allowed to concentrate and produce failure in spots.

The first control operation is to sandblast the inside of the pipe to remove the mill scale. A mill scale free surface allows corrosion to:

- Affect the whole surface simultaneously, or

Drilling Section

*July 1, 1952

WORLD OIL*
obviously, were free of mill scale. However, it may be generally stated that:

- The first corrosion control operation, sandblasting, is a beneficial control of chemical corrosion.
- The second corrosion control operation, shot peening, is a beneficial control of mechanical corrosion.

But peening, without first removing the mill scale by sandblasting may stimulate bad localized spot corrosion if contaminated abrasives and hammered-in inclusions are factors as they are when the mill scale is sandblasted off to achieve more noble-passivated stainless steels. Like painting over mill scale for the decorative purpose of hiding what is going on underneath, it may contribute to rather than defer, corrosion failure of the steel.

Tests Prove Worth

Simulated drilling condition tests show that peened drill pipe compared to unpeened withstands four times as many cycles of stress before average failure. Because it is difficult to simulate the complex wet conditions of actual drilling on full-sized joints, these usually have been dry runs which show only improved resistance to pure or dry fatigue. They show only how much longer pipe can last in areas where failure is assumed to be due to mechanical fatigue because no pits or obvious chemical corrosion patterns occur.

To observe the compounded progress of mechanical fatigue in the presence of wet chemical corrosion, particular attention is being given to field service data on a carefully monitored string now drilling in West Texas. In this string one third of the joints have been left untouched; one third have been sandblasted only; and one third have been sandblasted and shot peened.

Completion of this test, it is expected, will provide reliable field service data to confirm again the first control operation, sandblasting, to remove the mill scale, increases pipe service life more than 50 percent; and that the second operation, shot peening, places the peened surfaces in such favorable condition that they withstand more than four times as many cycles of stress before failure.

REFERENCE

1. Removing Mill Scale Increases Pipe Service Life, Ralph Irving, WORLD OIL—October, p. 140.