CONTINUOUS CLEANING APPARATUS
George W. Powell, William J. Harper, and James H. Carpenter, Jr., Hagerstown, Md., assignors to The Carburettum Company, Niagara Falls, N.Y.
Filed Aug. 13, 1969, Ser. No. 849,939
Int. Cl. B24c 3/08

25 Claims

ABSTRACT OF THE DISCLOSURE
A continuous cleaning apparatus comprises a rotating barrel open at both ends and made in a skeletal form with longitudinal peripheral parts support slats for permitting treating media to pass through the slats and contact the parts. Spacing means are provided in the parts to maintain them spaced from each other. The spacing means are driven in a forward stroke and return stroke by reciprocating means during each revolution of the barrel.

BACKGROUND OF INVENTION
One of the most significant developments in high production treatment, such as blasting, in recent years is the development of the axial flow barrel concept which is described in commonly assigned copending application Ser. No. 533,183, filed May 26, 1966. Such an axial flow barrel is particularly effective on parts whose ends are such that a small space therebetween permits sufficient abrasive to enter and clean the ends. Parts such as automobile heads, manifolds, etc., are particularly adapted to the axial flow concept.

The axial flow concept has been enthusiastically received by the automotive industry because its design improves cleaning with fewer blasting wheels and less horsepower. In most cases axial flow eliminates the need for a second machine to spot clean parts not cleaned by the first blast. Axial flow machines are easily automated thus eliminating expensive labor. All of these advantages have pointed up the need for an axial flow machine that can clean automobile motor blocks. However, one disadvantage of conventional axial flow machines for blocks is that if blocks are pushed end to end, the ends of the blocks cannot be cleaned. This same problem exists for some automobile heads and other parts.

One method for cleaning blocks is to push the blocks oriented bank to bank instead of end to end. This method exposes the ends to the blast and because of the V-8 block shape the sides can be cleaned. This method positions the blocks for effective overall cleaning; many blocks, however, because of their shape, cannot be pushed bank to bank. This problem requires the automobile manufacturer to change this casting which is expensive and sometimes impractical.

SUMMARY OF INVENTION
An object of this invention is to provide an axial flow arrangement wherein parts such as automobile blocks or similar parts which cannot be pushed one against another can be processed through the barrel.

A further object of this invention is to provide such an arrangement which not only makes it possible to move blocks bank to bank but also blocks or other parts can be spaced far enough apart so that flat ends can be cleaned when the parts are advanced flat end to flat end.

In accordance with this invention the continuous cleaning apparatus comprises a rotating barrel open at both ends and in skeletal form with longitudinal peripheral support slats for permitting treating media to pass through the slats and contact the parts. Spacing means move the parts in the barrel and maintain them spaced from each other. The spacing means are driven in a forward stroke and a return stroke by reciprocating means during each revolution of the barrel.

The spacing means may advantageously be a longitudinal bar having parts engaging surfaces such as pusher lugs. The bar may be juxtaposed and parallel to one of the support slats with the combined thickness of the bar and its juxtaposed support slab being about equal to the thickness of the remaining support slats.

During operation of the device the forward stroke of the spacing means advantageously begins at the beginning of a barrel revolution when the barrel is in its part loading position. The forward stroke ends when the barrel has rotated about 90° and the return stroke begins at about 180° revolution and ends at about 270° revolution.

When the barrel continuously rotates parts may be continuously loaded by a walking beam arrangement.

In an alternative form of this invention the reciprocating spacing means may be one of the support slats which has rollers mounted thereon for riding against guide rails.

THE DRAWINGS
FIG. 1 is a cross-sectional view in elevation of a continuous treating apparatus in accordance with this invention;
FIG. 2 is a cross-sectional view of the apparatus shown in FIG. 1;
FIGS. 3-4 are end views of the apparatus shown in FIG. 1 in different phases of operation;
FIGS. 5-8 are cross-sectional end views of a portion of the apparatus shown in FIG. 1 in different phases of operation;
FIG. 9 is a fragmentary view of a portion of an alternative form of this invention;
FIG. 10 is an end view similar to FIGS. 3-4 of an alternative arrangement of this invention;
FIG. 11 is a side view of the arrangement shown in FIG. 10;
FIG. 12 is a view similar to FIG. 9 showing still another alternative form of this invention;
FIG. 13 is a plan view of the arrangement shown in FIG. 12; and
FIGS. 14-15 are cross-sectional views of a modified form of this invention in different phases of operation.

DETAILED DESCRIPTION
FIGS. 1-2 show a continuous cleaning apparatus 10 in accordance with this invention. As indicated therein the apparatus 10 includes barrel 12 which is open at both ends for receiving and discharging parts 14. The barrel as best shown in FIGS. 1 and 5-8 is of skeletal form comprising a plurality of longitudinal peripheral support slats 16a, 16b, 16c, and 18 which permit treating media, such as blast particles, to contact the parts 14 when projected from suitable treating means, such as blast wheels 20. Barrel 12 is rotated by drive 21 to expose all portions of part 14 to the blast wheels 20. To this point the treating apparatus is similar to the apparatus disclosed in commonly assigned copending application Ser. No. 533,183, filed May 26, 1966.

Apparatus 10 is provided with a spacing device or bar system 22 which is moved in a forward stroke and a return stroke by reciprocating mechanism 24 so that the parts 14 are moved axially in barrel 12 while being spaced from each other to permit the blast particles from blast wheels 20 to thoroughly clean the ends of parts 14. Thus the movement of the parts through the barrel is achieved by this bar system 22, rather than by the parts being pushed one against another as in the arrangement of
FIGS. 3-4 show the loading arrangement whereby blocks 14 are loaded on the continuously rotating barrel to solve the third problem indicated above. As illustrated in FIGS. 3-4 the loading is accomplished by a mechanism 40 which is mechanically interlocked with barrel 12. For example the walking beam arrangement 40 includes a pair of rotating sprockets 42 having arms 44 attached thereto. Beam 46 is attached to the remote ends of arms 44 with support platform 48 being connected to the upper end of beam 46. As is apparent from FIGS. 3-4, sprockets 42 rotate beam platform 48 also rotates in such a manner that the part 14 would be first received on platform 48 (FIG. 3) and deposited in barrel 12 when platform 48 has rotated 180° to the position shown in FIG. 4. Chain system 50 interconnects the walking beam arrangement 40 with barrel 12 so that both are driven by a common drive by a ratio of 1:1.

FIGS. 10-11 show an alternative drive 50a for walking beam 40a. In this arrangement barrel 12 is driven by gear 51. Thus the reducer 52 is provided to reverse the direction of rotation for driving the walking beam 40a.

As previously indicated the loading of parts 14 into barrel 12 occurs in the following manner: a part 14 is moved onto platform 52 in any suitable manner. The walking beam platform 48 lifts the part off stationary platform 54. At this instant barrel 12 is in the position shown in FIG. 7 wherein the space of the arms 26 have rotated 180°. The walking beam platform 48 continues to move along arc 56 and deposits the part 14 onto barrel 12. At this time barrel 12 is in the loading position shown in FIG. 5. The walking beam continues along arc 56 to pick up the next part.

FIGS. 14-15 show an alternative spacing arrangement for moving the blocks or parts 14 through barrel 12. In this arrangement instead of two bars such as 18 and 30 in the previous arrangement, the arrangement of FIGS. 14-15 shows a simple bar 58 which acts as both the support and the moving or reciprocating bar. In this arrangement the parts 14 is carried in the rotating barrel 12 instead of sliding. If friction sufficient between part 14 and bar 58 lug 58 would not be required. As a safeguard, however, to assure sufficient locking or adherence of part 14 to bar 58, bar 58 may have either a protrusion 60 or an indentation or recess 62 which is shown in phantom. Bar 58 is supported by and moves axially on rollers 64 at each end of barrel 12 which run along guide rails 66. The walking beam loading and sequence of bar motion would be the same as that previously described.

In order to solve the fourth problem relating to ram motion for reciprocating the spacer bar, various alternative arrangements are provided. For example as shown in FIGS. 1-2 a hydraulic cylinder 38 or other mechanical means is disposed at the center of rotation of barrel 12 with its rod or ram 36 extending therefrom. The end of ram 36 is connected to the bar system 22 by a rotating spherical bearing 68 to offset portion 34 of bar 30. Cylinder 38 is mounted in a universal movement friction mount 70. The universal mount 70 plus the spherical bearing 68 allows the barrel 12 to rotate in any suitable manner permitting the bar 30 and its offset 34 to rotate about bearing 68. In this manner the problem of regarding air or hydraulic feed lines is obviated since the cylinder itself does not rotate.

FIGS. 12-13 shows an alternative arrangement wherein the cylinder 38a is connected to the rotating barrel 12 while a rotary hydraulic joint 72 is mounted at the center of rotation of barrel 12. A further modification is also illustrated in FIG. 12 wherein the rod or ram is disposed in bellows 74 to prevent abrasive particles or other debris from being carried by the rod into the cylinder.

A still further reciprocating drive is illustrated in FIG. 9. In this arrangement the ram motion is achieved by a mechanical drive with rack and pinion drive 76. With this
type of drive the pinion 78 is powered by any conventional air, hydraulic or electric rotating motor which is interconnected with the barrel rotation.

As previously indicated the parts 14 are conveniently discharged from the barrel when the barrel has rotated 180° such as shown in FIG. 15. In this position the part is disposed outside the barrel and would only be supported by the reciprocating bar. The reciprocating bar, however, is connected to the part and thus the part can be freely deposited upon a platen 80, conveyor or other suitable discharge means.

It is to be understood that various features of these arrangements may be interchanged. For example any of the arrangements can include the bellows 74. Similarly, the various reciprocating means may be used with the various types of devices while either or both of the winding barrel arrangements may be used with any of the other devices.

With the axial flow system of this invention it is possible to handle parts that cannot be handled in conventional axial flow machines. For example parts, that, because of their shape, cannot be pushed one against another can be handled by the inventive arrangement. Similarly parts whose ends cannot be cleaned when the parts are pushed one against another can be spaced apart to provide the end cleaning in accordance with this invention. Moreover in some cases if the different parts are close to the same size, various types of parts may be run intermixed through the barrel.

Further with the arrangement shown in FIGS. 14-15 the spacing and support can be accomplished with the same total number of barrel support bars or slats as would be required with a conventional axial flow blast machine. Since these bars are carried on rollers, much less axial movement force is required to progress the parts through the barrel.

What is claimed is:

1. A continuous treating apparatus comprising a barrel having a longitudinal axis, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeleton form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, reciprocating means for moving said spacing means in a forward stroke and in a return stroke during each revolution of said barrel with said forward and return stroke being actuated in different quadrants in the revolution, and said spacing means being mounted for movement in a plurality of radial positions with respect to the longitudinal axis of said barrel.

2. An apparatus as set forth in claim 1 wherein said spacing means includes a longitudinal bar having spaced parts engaging surfaces thereon for maintaining the parts spaced apart from each other.

3. An apparatus as set forth in claim 2 wherein said spaced parts engaging surfaces are non-pivotal pusher lugs.

4. An apparatus as set forth in claim 3 wherein said longitudinal bar is disposed outside of the barrel periphery jacketed and parallel to one of said support slats.

5. An apparatus as set forth in claim 4 wherein the combined thickness of said longitudinal bar and said one of said support slats is about equal to the thickness of each of the remaining support slats, and said one support slat being connected to and supported by at least one of said remaining support slats.

6. An apparatus as set forth in claim 2 wherein said longitudinal bar extends beyond said discharge end of said barrel and is disposed for discharging a part when said barrel and said bar has rotated about 180° from its loading position.

7. A continuous treating apparatus comprising a barrel, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeleton form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, and reciprocating means for moving said spacing means in a forward stroke and in a return stroke during each revolution of said barrel and return stroke being actuated in different quadrants in the revolution, said spacing means including a longitudinal bar having spaced parts engaging surfaces thereon for maintaining the parts spaced apart from each other, said longitudinal bar extending beyond said discharge end of said barrel and is disposed for discharging a part when said barrel and said bar has rotated about 180° from its loading position, said reciprocating means being connected to said longitudinal bar in such a manner that said forward stroke of said longitudinal bar begins at the beginning of a revolution of said barrel when said barrel is in its parts loading position, said forward stroke ending when said barrel has rotated about 90° after said loading position, said return stroke beginning when said barrel has rotated about 180° after its loading position, and said return stroke ending when said barrel has rotated about 270° after its loading position.

8. An apparatus as set forth in claim 2 wherein said parts engaging surface is out of contact with its part when said barrel has rotated about 180° from its loading position.

9. An apparatus as set forth in claim 8 wherein said longitudinal barrel is one of said support slats.

10. An apparatus as set forth in claim 9 wherein said parts engaging surfaces are spaced protrusions on said longitudinal barrel.

11. An apparatus as set forth in claim 8 wherein said parts engaging surfaces are spaced recesses in said longitudinal barrel.

12. A continuous treating apparatus comprising a barrel, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeleton form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, and reciprocating means for moving said spacing means in a forward stroke and in a return stroke during each revolution of said barrel with said forward and return stroke being actuated in different quadrants in the revolution, said spacing means including a longitudinal bar having spaced parts engaging surfaces thereon for maintaining the parts spaced apart from each other, said longitudinal bar being one of said support slats, including rollers mounted on said longitudinal bar adjacent both open ends of said barrel, and guide rails disposed for having said rollers ride thereon during said forward stroke and said return stroke.

13. A continuous treating apparatus comprising a barrel, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeleton form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, and reciprocating means for moving said spacing means in a forward stroke and in a return stroke during each revolution of said barrel with said forward and return stroke being actuated in different quadrants in the revolution, said spacing means including a longitudinal bar having spaced parts engaging surfaces thereon for maintaining the parts spaced apart from each other, said longitudinal bar being one of said support slats, including rollers mounted on said longitudinal bar adjacent both open ends of said barrel, and guide rails disposed for having said rollers ride thereon during said forward stroke and said return stroke.
stroke and in a return stroke during each revolution of said barrel with said forward and return stroke being actuated in different quadrants in the revolution said drive means being connected for continuously rotating said barrel, a walking beam arrangement being provided adjacent said load end of said barrel for loading parts onto said barrel, and said walking beam arrangement being driven by said drive means.

14. A continuous treating apparatus comprising a barrel, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeletal form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, and reciprocating means for moving said spacing means in a forward stroke and in a return stroke during each revolution of said barrel with said forward and return stroke being actuated in different quadrants in the revolution said reciprocating means including a ram disposed at the axis of rotation of said barrel, and universal joint means connecting said ram to said spacing means whereby said spacing means may rotate with barrel while said ram does not rotate.

15. An apparatus as set forth in claim 14 wherein said ram is hydraulically driven in a hydraulic cylinder disposed at said discharge end of said barrel.

16. An apparatus as set forth in claim 14 wherein said ram is mechanically driven by mechanical drive means disposed at said discharge end of said barrel.

17. A continuous treating apparatus comprising a barrel, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeletal form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, and reciprocating means for moving said spacing means in a forward stroke and in a return stroke during each revolution of said barrel with said forward and return stroke being actuated in different quadrants in the revolution said reciprocating means including a ram connected for rotation with said barrel, said ram being mounted in a hydraulic cylinder disposed spaced from the axis of rotation on said barrel, and a rotary hydraulic joint being connected to said hydraulic cylinder with said rotary hydraulic joint being disposed along the axis of rotation of said barrel.

18. An apparatus as set forth in claim 17 wherein said ram is disposed within a bellows.

19. A continuous treating apparatus comprising a barrel, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeletal form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, reciprocating means for moving said spacing means in a forward stroke and in a return stroke during each revolution of said barrel, and said reciprocating means being connected to and jointly rotate with said barrel.

20. A continuous treating apparatus comprising a barrel, said barrel having a longitudinal axis, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeletal form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, spacing means for moving the parts axially in said barrel, reciprocating means for moving said spacing means in a forward stroke and in a return stroke, said spacing means including an elongated bar extending generally parallel to the barrel axis and movable in a plurality of radial positions with respect to the barrel axis, and a plurality of non-pivotal parts engaging lugs fixed on said bar.

21. An apparatus as set forth in claim 20 including means for changing the relative distance between said bar and the axial centerline of the parts flowing through said barrel.

22. An apparatus as set forth in claim 21 wherein said means for changing said relative distance includes said drive means, and said bar being connected to rotate with said barrel whereby during the rotation of said barrel the parts move toward and away from said bar.

23. A continuous treating apparatus comprising a barrel, said barrel being open at both ends to permit the axial flow of parts therethrough with one end being a load end and the other a discharge end, said barrel being of skeletal form with longitudinal peripheral support slats to permit treating media to contact the parts in said barrel, treating means for projecting treating media into said barrel, drive means for rotating said barrel, said drive means being connected for continuously rotating said barrel, a walking beam arrangement being provided adjacent said load end of said barrel for loading parts onto said barrel, and said walking beam arrangement being driven by said drive means.

24. An apparatus as set forth in claim 20 including a blasting cabinet, said barrel being disposed in said blasting cabinet, feed means adjacent said load end of said barrel for delivering parts thereto, drive means being adjacent said discharge end of said barrel for carrying parts away from said barrel, and said treating means being a plurality of centrifugal throwing wheels.

25. An apparatus as set forth in claim 23 including a blasting cabinet, said barrel being disposed in said blasting cabinet, discharge means adjacent said discharge end of said barrel for carrying the parts away from said barrel, and said treating means comprising a plurality of centrifugal throwing wheels.

References Cited

UNITED STATES PATENTS
2,204,636 6/1940 Turnbull 51—9
2,565,341 8/1951 Artis 51—15
9,918,071 12/1959 Umbreit et al. 124—144

LESTER M. SWINGLE, Primary Examiner

U.S. Cl. X.R.

51—9

65