ON THE AREA COVERAGE OF GRIT BLASTING

Katsuji Toshia
Kisuke lida

Meiji University
School of Science and Technology
1-1-1 Higashimita, Tama-ku, Kawasaki 214, JAPAN.

1. INTRODUCTION

Full coverage i.e. completely covered with dent is a base of grit blasting. Now a days, area coverage is usually calculated by next formula, \(C = 1 - (1 - C)^n \) [1]. Although this formula means that full coverage didn’t reach, but we know that full coverage is easily reached on ordinary process.

The purpose of this paper is to obtain the relation between blasting conditions and area coverage including full coverage. Grit blasting was performed for plain carbon steel (0.45%C) under several conditions. Measured factors are area coverage and full coverage.

2. FORMER THEORY

Now, area coverage may be calculated with the next equation by SAE,

\[C_n = 1 - (1 - C_1)^n \] (1)

Fig. 1. Influence of blasting time on area coverage. (SAE)
This equation does not lead full coverage till infinite time as shown in Fig. 1,
and not found to be suitable for calculating area coverage and full coverage. For this 98% coverage is used conventionally as full coverage. Namely, this equation contains basic contradictions in practice.

3. EXPERIMENTAL PROCEDURE

Blasting conditions, equipment, grit and work material are shown in Table 1. Treatments of data on dent and coverage are as follows:

i. Diameter of dent was determined from mean values calculating from long and short diameters of 20 dents.

ii. Area coverage was determined from the ratio of total area of dent on blasted surface from photo enlarged six times.

<table>
<thead>
<tr>
<th>Table 1. Experimental conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
</tr>
<tr>
<td>Grit</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Grit blasting</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Specimen</td>
</tr>
</tbody>
</table>

4. RESULTS

4.1 Area Coverage

The relations between area coverage and blasting time are shown in Fig. 2, and the increasing ratio of area coverage is divided into the 1st and 2nd term. There are very few overlapped dents in the 1st term, and most of all dent are overlapped partially in the 2nd term.

Factors which affects area coverage are area of one dent and number of dent. The former is determined by mean diameter of dent (d), and the latter is determined by the density of dent on unit area of specimen.

As shown in Fig. 3 the relation between the mean diameter of dent and grit size and velocity can be linear on the logarithmic coordinate, and the formula is:

\[d = k \cdot D_g \cdot V^{1/2} \]

Therefore, mean diameter is in proportion to grit size and square root of grit velocity.

With same procedure, density of dent has been found to be in proportion to the sectional area of lead pipe and in inverse proportion to the cube of grit size as shown in Fig. 4.
Fig. 2. Relations between area coverage and blasting time. (Log - Log)

Fig. 3. Relation between mean diameter of dent and grit size (a) and grit velocity (b)

Therefore, the formula on the number of dent per unit time and unit area of specimen N is as follows,

$$N = k_1 \cdot D_0^{2} \cdot D_{g}^{-3}$$

Total area of dent per unit time and unit area of specimen Q is the product area of one dent (S_d) and N in eq. (3). Therefore, the next equation as obtained,

$$Q = S_d \cdot N, \text{ where } S_d = \pi \cdot d^2 / 4,$$

$$= k_0 \cdot D_p^{2} \cdot D_{g}^{-1} \cdot v$$

$$162$$
Fig. 4. Relations between density of dent and grit size (a) and diameter of lead pipe (b).

Fig. 5. Relations between initial area coverage and grit size (a) and velocity (b).
Because initial area coverage C_1 is defined by $(A \cdot Q)/A$, where A is blasting area, and C_1 is equal to Q. Namely, Q is the maximum value of area coverage per unit time.

The relation between initial area coverage and grit size and velocity are shown in Fig. 5 on logarithmic coordinate, and from this results, the equation (4) is confirmed.

As shown in Fig. 2, the relation between area coverage (C) and total dent area per unit time (Q), blasting time (T) can be expressed in the following equation.

$$C = k_c \cdot Q \cdot t^m$$

Here, coefficient k_c means the overlapping ratio of dent and exponent m means the blasting efficiency. Figure 6 shows the relation between initial area coverage and k_c, m in 1st and 2nd terms. Exponent m is 0.6 - 1.0 in the 1st term, and 0.06 - 0.11 in the 2nd term.

![Graph showing the relation between initial area coverage and k_c, m](image)

Fig. 6. Coefficient k_c and exponent m in equation (5) [(a) 1st term and (b) 2nd term]

4.2 Full Coverage Time

The influences of diameter of the lead pipe, grit size, and velocity on full coverage time are shown in Fig. 7. From these, the relation is as follows;

$$T_r = k_r \cdot \frac{D_p}{D_e} \cdot v^{-1}$$

The influence of the hardness of work material on full coverage time is shown in Fig. 8, full coverage time is in proportion to the square root of the hardness.
Fig. 7. Relations among full coverage time, diameter of lead pipe (a), grit size (b) and velocity (c).
5. CONCLUSIONS

The increasing ratio of area coverage is clearly separate into two terms (the 1st and the 2nd) at 85% coverage.

Area coverage is affected by factors such as the number of dent per unit time on unit work area, and total dent area per unit time.

Area coverage can be expressed the next formula:

\[C = k_e \cdot Q \cdot T^m \]

Here \(C \): area coverage, \(k_e \): material constant, \(Q \): total dent area, \(T \): blasting time,

\(m \): exponent (0.6 - 1.0 in the 1st, 0.06 - 0.11 in the 2nd)

Full coverage will be reached in a few minutes, and the relations among full coverage time \((T_r) \) and diameter of lead pipe \((D_p) \), grit size \((D_g) \), grit velocity \((v) \) are shown as the next equation.

\[T_r = k_T \cdot D_p^{1.2} \cdot D_g^{1/2} \cdot V^{-1} \]

where, \(k_T \): work material constant involved hardness

6. REFERENCE