Mechanically-Induced Stress from the Manufacturing Process

by Clive H. Hare, Coating System Design, Inc.

The imposition of externally derived mechanical stress on paint films is a major factor in paint film performance. Stress manifestations, ranging from deformation (flexing, stamping, impact, and bending) to wear (abrasion, scuffing, burnishing, scratching, chipping, and grinding), are numerous. In practice, these stresses may be quite specific, but their sources are very diverse.

The paint system responds to mechanically-induced stresses predominantly by physical change. The nature and magnitude of the physical change may also vary, depending upon the temperature and rate of applied stress, as well as other conditions under which the stress is applied (the presence of water and chemicals, for example). Chemical degradation in polymers can result from mechanical stress (such as the depolymerization of natural rubber by grinding and kneading in the presence of oxygen), but physical changes induced by such stresses are immediately more obvious and generally precede chemical degradation of the film.

The effects of external mechanical stresses on coating films are more readily understood than those of internal stress and other more subtle stress phenomena. This statement is particularly true for physical stresses related to the service environment (the chipping of a car finish under the impact of road gravel, for example). It also applies, if to a lesser degree, where stresses are derived from the manufacturing process (post-forming, drawing, or stamping of pre-coated metal). However, the scientific categorization and meaningful quantification of many stress phenomena, particularly service stress phenomena, remain elusive. The present article describes weaknesses in current testing protocols, a variety of manufacturing stresses, the effects of the substrate and the film on manufacturing stresses, deformation of a coating, and tests for deformability.

Current Testing and Analysis

There is a lack of adequate laboratory testing protocols to accurately simulate (and ideally accelerate) what goes on in the field. Many of the standard tests used by the industry to "measure" the physical property profiles of coating films often do not represent the physical conditions existing in practice or are not appropriately applied. What does Taber abrasion tell us of the wear on structural steel bridge coatings? What value are cylindrical mandrel determinations derived in the laboratory at 25 C (77 F) on a 10 C (50 F) glass transition (T_g) coating, when the coating is flexed in service at or below freezing?

Only in the last 20 years have more universal and scientific techniques such as stress/strain analysis and dynamic mechanical analysis been applied to quantify the mechanical properties of coatings. From this vantage, there is still a long way to go before the empirical approach, widely used by the coatings industry, is either replaced or amalgamated into the more fundamental analysis that is used in the rubber and plastics industry. In defense of our own industry, it may be argued that there are complications in coating film behavior not encountered in these other industries. Not the least of these complications are the presence of the...
substrate, the lamella heterogeneity of superimposed films of practical coating systems, and the comparatively meager cross-sections involved. Variations in film structure relating to cross-link density, film thickness, solvent retention, and the distribution of pigmentation (especially platy and acicular pigmentation) also affect coating film behavior under stress and complicate adequate categorization.

Manufacturing (Deformation) Stresses

Manufacturing stresses are incurred in coating films from post-painting processes that involve bending, stamping, forming, drawing, or otherwise deforming an already coated substrate (usually a metal). Ideally, this deformation should be accomplished without producing cracking, delamination, or any other fatal flaw in the substrate and coating system. Among items so manufactured are architectural and residential sidings, guttering, appliance cabinets, automobile body parts and accessories, window blinds, cans, fluorescent lighting fixtures, and bottle tops.

In each case, the applied film must deform without failure as the coated sheet is shaped at the temperature and rate at which the forming stress is applied. That is, the film must be capable of undergoing the necessary (preferably irreversible) deformation without exceeding its elongation at break. The ideal coating should exhibit stress/strain behavior typical of that depicted in Fig. 1a. Elastic behavior (Fig. 1b) is less ideal, for the strain developed in the coating as the metal is deformed will be retained, and the applied coating system will be less capable of withstanding any additional post-forming stresses than would have been the case were the strain to have been dissipated in irreversible deformation. Elastic behavior of the type depicted in Fig. 1c is unsatisfactory because the coating fails during forming. As noted many times in this series, the exact shape of the stress/strain curve will be markedly affected by the temperature and rate of the forming process. Changes in either can so foreshorten the elongation at break that brittle failure, such as cracking or delamination, may occur.

Most coatings have property profiles that are compromises between 2 or more necessary but conflicting attributes. Thus, most coatings may be quite sensitive to changes in very specific forming rates and temperatures. An example is can coatings, which are applied to blanks before fabricating draw and redraw two-piece cans, for example. These coatings must not only be capable of withstanding the drawing process, but must also be able to resist chemical degradation by the can’s contents. The coatings must also form a barrier strong enough between the contents and the metal so the substrate does not alter the flavor of the contents. Even cans that are coated after fabrication must be crimped as they are sealed by the packer, so the coated substrates must have enough flexibility to withstand the stresses of this application. Chemical resistance continued
will also mar the coated material. (To minimize marring, small quantities of high melting point polyethylene waxes are incorporated in the finish formulation. These additives are also used in the backing coatings.) Finally, the coated steel must be shaped in the forming operation. It is indispensable that these operations be performed so that cracking does not occur along the convexity and bend of the fabricated part. Again, changes in either rate (increasing) or temperature (decreasing) of the forming operation may have the same effect as raising the film modulus. These changes may in turn foreshorten the elongation at break properties so that it may be difficult to avoid cracking on forming.

In practice, cracking often occurs along the bends of coil-coated sidings (Fig. 2). Such cracks are less prevalent with the high-end, high performance coatings, such as the thermoplastic fluoropolymers, than they are with some of the alkyls, acrylics, and polyester-based systems. Where aluminum and galvanized substrates are coated with high performance coating systems (usually primed with chromate-pigmented epoxies), the cracks, which may extend into the metal itself, may remain innocuous. The bases of the V-shaped cracks along the convexities of the bend are quickly sealed with a polarizing film of corrosion product. In cheaper alkyd-coated stock for less demanding applications, cracking itself is not so much the problem as is the subsequent corrosive breakdown that may propagate from the cracked line (Fig. 3).

The attack may be intensified in stacked bundles of cut sheets when water becomes entrapped between the sheets, and crevice corrosion may occur. Crevice corrosion may result from condensation produced from the shipment of either cold coiled or cut stock into warm, humid areas. It can be particularly virulent where the cut stock bundles are subject to salt water from their transport over salt-laden roads in winter, or from unfavorable storage conditions. Storage is most advantageously arranged using spacers between sheets and angle stacks to facilitate adequate drainage of water from between the adjacent panels. The stacks must also be covered to prevent their rewetting.

A similar problem of salt-induced corrosion occurred on a white coil continued
coating during the embossing of a decorative aluminum wall panel. Microcracking resulting from brittle failure led to severe corrosive deterioration of the panels in subsequent service in a meat packing plant. The failure was manifested as undercuts radiating from the exposed metal at the base of the crack. Here, the primary electrolytes that accelerated the aluminum corrosion were strongly alkaline cleaning agents and hypochlorite solutions, which attacked the panels at the exposed aluminum sites. On non-embossed panels where the coating was not cracked, there was no failure.

Effects of Substrate, Adhesion, and Thickness
The presence of the substrate, the film interaction with the substrate, and the thickness of both substrate and the film greatly affect the deformation properties of applied coating films. As Wicks, et al.,\(^1\) point out, the substrate can markedly reduce the unfavorable effects of deformation on the coating. Improved adhesion, resulting from increased interaction between paint film and substrate, inevitably increases the amount of stress that is necessary to produce brittle failures in these systems. This result may occur because stress is in part transferred to the metal, instead of being stored within the coating. The substrate is in this case acting as an energy sink.

It is well appreciated by any technician familiar with empirical testing methodology for flexibility (ASTM D522) and impact (ASTM D2794) that both the thickness of the metal and that of the film have great impact on the ability of the film to resist deformation. Schuh and Theuerer\(^2\) have shown that percent elongation (E) is related to the thickness of the metal (t) as well as to the radius of the mandrel (r) as E = \(100t/2r + 1\). Figure 4 shows the relationship of the mandrel diameter to the extent of elongation to which the coated coupon may be exposed during the bend test: the smaller the mandrel diameter, the higher the elongation and the more severe the effect on the coating. Figure 5 illustrates the fact that the elongation also increases as the thickness of the coating being bent increases; thus, thicker films must endure higher stress (elongation) than thinner films, and are therefore more prone to crack when bent over an identical mandrel. A similar effect is also noted as the thickness of the substrate increases (Fig. 6), for here, too, percentage elongation increases as identical films of the same film thickness are applied to progressively thicker panels and bent over the same mandrel.

continued
Compared to thicker films, thin films will withstand far greater deformation, more rapid deformation, and deformation at lower temperatures. It is for this reason that coil coating systems are so much lower in film thickness than maintenance coatings. Intercoat cure coatings may be as low as 0.1 mil (25 micrometers), while coating systems for coil stock designed for appliance cabinets are normally about 1 mil (25 micrometers). If a coil coating of a greater thickness cracks or delaminates when deformed, it may still be used if its film thickness can be reduced sufficiently without unduly affecting either corrosion resistance or opacity.

In the 1970s and 1980s, coil-coated stock for automobile body parts was coated with a proprietary, specialized zinc-rich, chromate-complexed, two-coat, single component, linear epoxy-based system for added corrosion resistance. Along with the ability to be welded and overcoated, one of the primary properties demanded of this system was that it survive the subsequent coating (and quenching) processes as well as the stamping and assembly processes without cracking or delaminating. This was accomplished in part by maintaining good corrosion resistance at low film thickness. When the automobile industry adopted the use of zinc protection on both sides of the coil-coated sheet, the proprietary chromated zinc-rich system became less competitive with electrogalvanized steel. The use of the latter has now largely surpassed the specialized proprietary coating system except in some limited one-side-coated sheet applications. Apart from these applications and some specialty applications in Europe (fencing), the large volume use of the proprietary zinc/chromate-complexed coating system for automobile body parts is now a thing of the past.

Physical Aging Effects: Densification

Both the rate of cooling and the interval between the cooling and postforming processes affect the resistance of the applied film to cracking on deformation. A film rapidly cooled through the T_g will retain more free volume than a similar film cooled slowly. Therefore, there is a greater opportunity for improved conformational adjustment towards a reduced free volume condition after cooling. Thus, a film cooled rapidly will exhibit greater flexibility and therefore greater resistance to cracking and de-adhesion than will a similar film cooled slowly. The effect is quite time dependent, however. Given sufficient time, the film cooled rapidly from curing temperatures will slowly achieve greater molecular compaction or densification and reach an equilibrium conformation at some ambient temperature below the T_g. At this stage, it will be quite as inflexible as the film cooled slowly.

The phenomenon, also known as physical aging, is illustrated by Port. He describes 2 applications of the same pipe coating on 2 pipes, one with a heavy cross-section and one thin-walled. After curing, both pipes were quenched under identical conditions in cold water, sectioned, and bent. The coating applied to the thick-walled primer cracked, while the same coating on the thin-walled primer did not. Repeated a day later, the same test resulted in both samples cracking. The effect is related to the greater heat retention properties of the thick-walled pipe. The cooling of the coating was slowed during quenching, allowing a more complete adjustment towards conformational equilibrium (and release of free volume). The coating on the thin-walled pipe cooled more rapidly. Therefore, it had less opportunity to adjust conformationally and to minimize free volume before passing through the T_g range. In this case, conformational adjustment occurred more slowly (overnight). This process results in eventual reduction in free volume and enough decreased flexibility to fail the second bend test.

Printed bottle caps and crowns are necessarily coated before final fabrication (essentially the sealing of the bottle). Because of this, they must be distortion-printed. This is a process in which the print design on the flat blank is deliberately distorted in such a way that during the

THE PORT AUTHORITY OF NY & NJ

REQUEST FOR QUALIFICATION INFORMATION

The Port Authority of New York and New Jersey intends to prequalify prospective bidders for the contract listed below and also for certain future bridge painting contracts that may be bid within the next two years. The qualification information is contained in a separate document that is available by contacting the person listed below:

Contract GWB-244,006 - "George Washington Bridge - Removal of Lead Based Paint and Repainting Underside of the Upper Level and Structural Steel Rehabilitation"; contact Sultan Aslam, telephone: (212) 435-9684, fax: (212) 435-8826. The work required by the Contract entails structural steel rehabilitation and the complete removal of the lead-based paint on the George Washington Bridge underside of the upper level to a metal finish (SP-10) utilizing a full containment system during blasting. Repainting will consist of zinc primer, epoxy intermediate coat and urethane topcoat. It is presently estimated that the work required by the Contract will be in the range of $35 to $50 Million. Qualification information is presently to be submitted by February 14, 1997, and it is anticipated that bid documents will be available to prequalified bidders on or about March 3, 1997.
cancelling. During crimping, the distortion is

Interestingly, instances have been recorded where certain thermosetting coatings on such metallic bottle caps have spontaneously delaminated on the shelf months after fabrication. This seems likely to be a result of residual strain within the coating film. The strain arises from a degree of reversible deformation, which, when stress is removed, acts to oppose adhesion. After fabrication, the deformed condition of the film is maintained solely by the metal substrate, while the coating attempts to recover elastically. As the restoring force eventually exceeds the adhesion to the metal (possibly driven by the physical aging effects noted above or perhaps even hygrothermal effects), delaminations take place. Improved resistance to this type of failure might be achieved by improving the adhesion of the coating to the bottle cap, reducing its film thickness, or replacing the coating with one that irreversibly deforms under the stress conditions of fabrication. Such spontaneous peeling may also be facilitated by interfacial insufficiencies between the coating layers. Again, it takes less stress on (or strain within) a coating to release a coating film when its adhesive strength is lowered. Coating release is facilitated by substrate contamination, defective metal treatment, or incompatible or otherwise faulty conversion coatings.

As Gaske5 reports, later processing or subsequent temperature changes may also induce failure in coil coatings that have maintained excellent integrity during the drawing operation. The coil coating industry employs a 54 C (130 F) “dry heat” exposure test specifically to assess this tendency.

Empirical Test for Formability

In addition to the cylindrical and conical mandrel test (ASTM D 522) and the impact (rapid deformation resistance, ASTM D 2794) tests, several other methods are commonly used for estimating the deformability of coatings.6

The ASTM D 522 mandrel test assesses flexibility by subjecting a coated panel to bending over mandrels of successively diminishing diameters (uncoated panel face against the mandrel). The lower the diameter over which the panel may be bent without cracking or delaminating the coating, the better the flexibility of the coating.
to sudden deformation (ASTM D 2794) involves dropping a weighted indenter from increasing heights onto a coated panel. This action is continued until the indentation produced is sufficient to result in either cracking or delamination of the film. Indentation forces are expressed in inch pounds or kilogram-meters (a product of the indenter weight times the height through which the indenter falls). Lower values are obtained when the indenter impacts the reverse side of the panel (producing a convex dimple) than when the indenter impacts the coating directly and produces a concave indentation.

Typical specifications for coil coatings differentiate between impact values producing fracture (i.e., not less than 80 in. lbs [0.92 kg-m] direct impact and 40 in. lbs [0.46 kg-m] reverse impact), and those producing adhesive loss (i.e., not less than 120 in. lbs [1.38 kg-m] direct and reverse).7

A more common test of flexibility of coil coatings is the T-bend test (ASTM D 4145). In this test, the coated sheet is repeatedly folded back upon itself through 180 degrees using a suitably clamped die. The coated surface is on the outside of the bend. The first bend (0T) is the most severe. Subsequent bends, 1T, 2T, and 3T, are made around the first bend, second bend, and third bend. Made over successively increasing thicknesses of metal, these bends are, therefore, progressively less severe. The effect is analogous to increasing the mandrel diameter in ASTM D 522.

Coil coatings may also be evaluated by stamping tests, which provide rapid deformation of coated stock by drawing the metal into cupped shapes at high rates of deformation.6 Cupping tests may be used to produce deformations at a slower rate.

In many of the above tests, cracks may be quite difficult to detect. Several techniques may be used to facilitate such recognition. These methods include the microscopic examination of the bend and chemical tests such as the painting of the site of deformation with acidified copper sulfate solution.

Conclusion

Next month’s article will continue the discussion of externally derived mechanical stress by considering sliding type abrasive stresses that occur in service. JPCL

References