Shot peening is a process used by the spring industry that brings significant benefits to spring performance. It is a process that is not always fully understood. Springmakers usually know that the process improves the fatigue resistance of the springs they make, but do not always fully understand the mechanism behind this improvement. The purpose of this cautionary tale is to explain some of the theory behind shot peening of compression springs, which will help springmakers and their customers understand the process and the benefits it brings.

Shot peening of compression springs is a process that involves bombarding the whole surface of the spring with very many particles of rounded shot. The impact from the shot is so numerous that at least 80 percent of the spring surface is covered with small dents. Often 90 or 100 percent coverage is specified, but IST (Institute of Spring Technology) recommends an absolute minimum of 80 percent to be effective. Each impact produces a small dent and around that dent there will be a layer of material that has been work hardened by the impact and a deeper layer that has a residual compressive stress. After shot peening, the benefits accrued are:

a) The spring surface is harder (stronger).

b) The original wire surface is smoother with the original wire drawing marks being largely obliterated.

c) There will be a residual compressive stress on the inside surface of the compression spring where the applied stress in service will be a maximum.

All three of these benefits will contribute to the improvement in fatigue performance. But it is the last, the generation of a residual compressive stress that is the most important by far. It should be the strategy of spring manufacturers to maximize the residual stress. It should be noted that the residual compressive stress from shot peening offsets the resolved tensile component of the applied or operational stress.

Maximizing residual stress presents a problem to most springmakers because they have no machine for measuring this parameter in the springs they peen. Manufacturers of engine valve springs probably have the X-ray equipment necessary for measuring residual stress.

If you don’t make these very high performance springs, you probably have the means to measure the intensity of your shot peening using Almen strips. If the shot you use is between 2 and 20 percent of the spring wire diameter, then the higher the Almen arc rise the better the peening will be. However, there is a possibility of over-peening using this clumsy approach to optimize your process. Over-peening is not a disaster, because spring performance will always be better with over-peening than...
The TEC 4000 x-ray diffraction system non-destructively measures stresses created by processes like welding, bending, heat treating, rolling, and shot peening. Residual stresses can either enhance or degrade component lifetime, performance, reliability. Depth profiling and retained austenite measurements also available. TEC systems measure on the shop floor or in the lab or field. TEC’s lab services meet A2LA/ISO 9001:2000.

Mark Hayes is the senior metallurgist at the Institute of Spring Technology (IST) in Sheffield, England. He manages IST’s spring failure analysis service, and all metallurgical aspects of advice given by the Institute. He also gives the spring training courses that the Institute offers globally. Contact Hayes, by phone at (011) 44 114 252 7984, fax (011) 44 114 2527997 or e-mail m.hayes@ist.org.uk.

The Original CLELAND SHOT CLEANING SPIRAL SEPARATOR

The Cleland Spiral Separator is the most successful method of separating round product from cracked, broken, or non-round materials. The Cleland Spiral Separator is available with a self-cleaning hopper to ensure total emptying of the top hopper bin.

“Cleland Spirals Work Around the World”

Phone/Fax: (763)571-4606

Cleland Manufacturing Company
2125 Argonne Drive
Minneapolis, Minnesota 55421 USA

X-RAY DIFFRACTION SYSTEM

The TEC 4000 x-ray diffraction system non-destructively measures stresses created by processes like welding, bending, heat treating, rolling, and shot peening. Residual stresses can either enhance or degrade component lifetime, performance, reliability. Depth profiling and retained austenite measurements also available. TEC systems measure on the shop floor or in the lab or field. TEC’s lab services meet A2LA/ISO 9001:2000.

Quality Engineering Inc.

Timely quoting • Competitive lead times

An ISO 9001:2000 Certified Company

Tel: 203-269-5054 Fax: 203-269-9277 Web: www.qes1.com
122 North Plains Industrial Road, Wallingford, CT 06492

For Quotations: qesadmin@qes1.com