Mini-Almen Strips: A Promising New Technology

Kelly McClurg\(^1\)
Jeff Derda\(^2\)

\(^1\)Avion Solutions, Inc., \(^2\)Electronics Inc.

2013 Shot Peening and Blast Cleaning Workshop
October 15-17, 2013
Outline

• Introduction to the Technology
• Developing a Correlation Chart
• Performance Comparison between Standard and Mini Almen Strips
• Intensity Validation Study along Altering Geometry
• Mini Almen Strip Saturation Curve Study
• Mini Almen Strips: A Promising New Technology
Introduction

- Mini-Strip developed to replace shaded Almen strips
 - Enhance the ability to accurately and efficiently measure intensity
 - Intensity for small areas or holes
 - Eliminates masking
 - Eliminates complex testing fixtures for hard to reach areas
 - Dove-Tail slots in jet engine disks
 - Gear roots
 - Internal bore of springs
 - Provides a detailed idea of what is happening in areas previously not tested
Introduction

• Mini-Strips
 – 1” x 1/8”
 – Attached with double-sided tape
 – Attached directly to a test component or simulated fixture
Developing a Correlation Chart

• Correlation between full and Mini Almen Strips must be established before the intensity in small and hard-to-reach locations can be determined

1. Run a saturation curve using standard Almen strips at the upper intensity limit
2. Mount a mini-strip on a flat surface (using double-sided tape) and expose it for the T1 time under the parameters for the upper intensity limit
Developing a Correlation Chart

3. Run a saturation curve using standard Almen strips at the lower intensity limit

4. Mount a mini-strip on a flat surface (using double-sided tape) and expose it for the T1 time under the parameters for the lower intensity limit

- A correlation between the mini-strip and the full-size strip has been defined
 - Acceptable mini-strip arc height readings
 - Electronics Inc. found that N mini-strips work best with low intensity A values due to sensitivity
Performance Comparison

• In a study conducted by Electronics Inc.:
 – Baseline performance correlation between mini-strips and standard Almen strips
 – “A” and “N” intensities tested
 – Conducted to verify consistent performance of the mini-strip

• Mini-strips and standard Almen strips mounted on Almen holders
 – In blast cabinet with 31” diameter rotary table
 – Blast nozzle mounted 18” above holders, 90° to the strip surface
Performance Comparison

1. Pre-bow for each mini-strip and standard strip measured and recorded
2. Mini-strips and standard strips peened to desired intensity
3. Saturation curves generated with Dr. Kirk’s Curve Solver program
4. Histograms were made from results
Performance Comparison

“N” Almen Strips

- Mean
 - Standard: 12.425
 - Mini: 6.0833
- Standard Deviation
 - Standard: 0.13568
 - Mini: 0.26458

<table>
<thead>
<tr>
<th>Media:</th>
<th>S110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow:</td>
<td>10 lb/min</td>
</tr>
<tr>
<td>Nozzle:</td>
<td>0.50” dia</td>
</tr>
<tr>
<td>Pressure:</td>
<td>23 PSI</td>
</tr>
<tr>
<td>Ratio: (N to Sub N)</td>
<td>2:1</td>
</tr>
</tbody>
</table>
Performance Comparison
“A” Almen Strips

• Mean
 – Standard: 12.32
 – Mini: 4.93
• Standard Deviation
 – Standard: 0.063245
 – Mini: 0.094868

<table>
<thead>
<tr>
<th>Media:</th>
<th>CCW28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow:</td>
<td>10 lb/min</td>
</tr>
<tr>
<td>Nozzle:</td>
<td>0.36” dia</td>
</tr>
<tr>
<td>Pressure:</td>
<td>28 PSI</td>
</tr>
<tr>
<td>Ratio:</td>
<td>2.5:1</td>
</tr>
</tbody>
</table>
Ultrasonic Shot Peening

- STRESSONIC® Ruggedized USP is a portable system
 - Ultrasonically excites media with Sonotrode head
 - Shop floor footprint of 30 square feet
 - Weighs 210 pounds
 - Easily moved to any location with 115 volts AC and filtered shop air available

- Establishes a small peening chamber around the repair area
 - Retains and recycles media during process
 - Creates Omni-Directional media flow within chamber
Intensity Validation Study

- Correlation between the mini-strip and the full-size strip
 - Target Intensity: 8A ± 1.5A
- Attach mini-strips to test component using double-sided tape
- Develop and record process parameters to produce arc height between correlated limits

<table>
<thead>
<tr>
<th>Condition</th>
<th>Full Strip (A)</th>
<th>Mini Strip (MA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>11.6</td>
<td>4.7</td>
</tr>
<tr>
<td>20</td>
<td>8.2</td>
<td>3.3</td>
</tr>
<tr>
<td>47</td>
<td>5.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

A Strip Correlation Using T1 Times

\[y = 1.9793x + 1.9393 \]
Intensity Validation Study

• Part used during this study
 – UH-60 Tail Rotor Blade Pitch Horn

• Mini-Strips benefits during this study:
 – Validate Intensity at different distances within the chamber
 – Validate Intensity on an angled incline
 – Eliminated difficult and costly test fixtures
Mini Strip Saturation Curve Study

<table>
<thead>
<tr>
<th></th>
<th>Mini-Strips “A”</th>
<th>Standard Almen Strips “A-1S”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>1070 Steel</td>
<td>1070 Steel</td>
</tr>
<tr>
<td>Thickness</td>
<td>0.51”</td>
<td>0.51”</td>
</tr>
<tr>
<td>Length</td>
<td>1.00”</td>
<td>3.00”</td>
</tr>
<tr>
<td>Width</td>
<td>0.125”</td>
<td>0.75”</td>
</tr>
<tr>
<td>Hardness</td>
<td>44-50 HRc</td>
<td>45-48 HRc</td>
</tr>
<tr>
<td></td>
<td>(44-50 HRc for “A”)</td>
<td></td>
</tr>
</tbody>
</table>

- With all material properties being the same, mini-strips should behave similar to standard Almen strips
 - Follow the 10% Rule
Mini Strip Saturation Curve Study

• Theoretical Correlation between a mini-strip and a standard Almen strip

\[R = \frac{h_n}{2} + \frac{d_n^2}{8(h_n)} \]

\[d_1 = 1.25'' \]
\[d_2 = 1.00'' \]
\[h_1 = \text{Measured} \]
\[h_2 \rightarrow \text{Calculated} \]
Mini Strip Saturation Curve Study

Avion Saturation Curve Solver
Compliant with SAE AMS 5.1165 & MIL-S-13165C

This Worksheet is Proprietary to Avion Solutions, Inc.

Data Points	Time (sec)	Arc Height (in x 10^3)	Negative Pre-Bow (in x 10^3)	Corrected Arc Height	Fitted Curve	Residuals	SSE
1 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2 | 3.0 | 0.0 | 0.1 | 4.0000 | 4.0773 | 0.2773 | 0.0000
3 | 5.0 | 0.0 | 0.1 | 8.0000 | 8.1542 | 0.1542 | 0.0000
4 | 24.0 | 0.4 | 0.1 | 8.3000 | 8.3533 | -0.0533 | 0.0000
5 | 48.0 | 0.4 | 0.1 | 8.2000 | 8.2050 | 0.0050 | 0.0000

Arc Height = a + b Time

This Worksheet is Proprietary to Avion Solutions, Inc.

USP Parameters

Pen Size: 1" x 3"
Almen Block Adapter
Tungsten Carbide
USP Machine Serial Number
2130 (Avion)

Pen Size: 1" x 3"
Almen Block Adapter
Tungsten Carbide
USP Machine Serial Number
2130 (Avion)

Arc Height = a + b Time

This Worksheet is Proprietary to Avion Solutions, Inc.
Mini Strip Saturation Curve Study

- Correlation Chart between Intensity and Mini-Intensity created
 - Using “A” Standard and Mini-Strips
 - Saturation Curves allow for a more accurate and consistent reading when checking intensities in small or difficult areas
 - Mini-Intensity not true Intensity, used for correlation purposes only

- Linear relationship
 - Demonstrates mini-strips behave similar to full strips regardless of intensity or parameters
Mini Strips: A Promising New Technology

• Complex and costly test structures eliminated
 – Mini strips can be attached directly to desired surface using double-sided tape

• Eliminates need to create shaded Almen strips

• Intensity confirmation available in areas previously unattainable
 – Due to small size and ease of application
Acknowledgements

A special thanks to the following for their contributions and technical support:

• Avion Solutions, Inc: Randy Buckner, Jason White, and Jon Tegtmeier
• SONATS and Empowering Technologies
• Electronics Inc.

STRESSONIC® and StressVoyager® are Registered Trademarks of SONATS SAS, Carquefou, FRANCE
Backup