
RESEARCH NEWS
Langdon Feltner and Paul Mort  |  Purdue University

16   The Shot Peener   |  Spring 2025

Introduction
In shot peening, compressive residual stresses are induced 
through impact events between media and the surface of a 
component. When designing a shot peening machine and 
specifying operational parameters, practitioners often aim to 
achieve full and even coverage through sufficiently long cycle 
times and careful positioning of the peening nozzle with respect 
to the treated surface. Mass flow rate, peening time, and blast 
pressure are particularly important when considering impact 
coverage on a component. Over a peening cycle, a discrete 
number of particles leave the nozzle, each with an associated 
mass. For a given substrate material, particle mass, and media 
hardness, the size of the surface dimple left by an impact is 
determined by the particle’s velocity, meaning the distribution of 
dimple coverage is directly related to the uniformity of particle 
mass flux.

Figure 1. Peening time, mass flow rate, and media size 
distributions contribute to coverage variability across 

scales of scrutiny.

Considering shot media as point masses with randomly chosen 
impact locations upon a component of a fixed area, denoted 
Apart, the average mass flux (m) is equal to the summation of all 
particle mass contributions over a cycle, divided by the peening 
time, tc, and Apart, or equivalently mass flow rate divided by Apart. 
Within control limits, m can be considered a constant derived 
directly from mass flow rate. On the other hand, let MA be the 
total mass of media that impacts within an arbitrary region with 
area A, shown in Equation 1. 

Equation 1.

MA depends on two distributed quantities, the number of 
particles that impinge the region (nA), and the mass of each 
particle (m ). The expected, or average, value of a random 
quantity (denoted E[∙]), is the probability-weighted summation 
of all possible values the variable can take. Wald’s identity (Wald, 
1944), (Ross, 1996) enables a simplified calculation of E[MA], 
separating the contributions of the independent variables nA and 
m  . Thus, E[MA] can be expressed as: 

Equation 2.

Variance (denoted Var[∙]) is a measure of the breadth of a dis-
tribution. Like Wald’s identity, the Blackwell-Girshick equation 
(Blackwell & Girshick, 1979) allows for the separation of contri-
butions from nA and m   with respect to variance. Var[MA] can 
then be expressed as:

Equation 3.

Relative standard deviation (denoted RSD[∙]) is the ratio of 
standard deviation, or the square root of variance, to average, 
a dimensionless quantity that expresses the proportional 
variability of a measure with respect to its mean value. In this 
context, RSD[MA] is certainly correlated to the variability in 
total work imparted onto corresponding features across runs 
of components. The goal of this report is to apply probabilistic 
reasoning to characterize a spatial distribution in impact coverage 
based on cumulative mass over the surface of a component. 
Specifically, deriving expressions for E[MA], Var[MA], and 
RSD[MA] to provide perspective on how operational parameters 
relate to surface treatment uniformity across scales of scrutiny. 

Spatial Uniformity of Mass Flux
In a previous Shot Peener report entitled “Characterization of 
Particle Size and Shape Distributions for Shot Peening Media” 
(Feltner, Gruninger, Canty, & Mort, 2024), we explored volume 
weighted distributions in peening media size and shape measured 
using dynamic image analysis (DIA). This work demonstrated 
the suitability of a lognormal distribution for describing size 
in relation to mass sieving. In the current work, DIA is used to 
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calculate number weighted distributions for probability-based 
impact coverage modeling.
	 A lognormal distribution in area equivalent radius (R) 
implies that ln(R) is normally distributed with a dimensionless 
geometric mean (μ) and standard deviation (γ).  To be consistent 
with the notation used in our previous work, μ=ln(dgN/2), the 
natural log of half the number weighted geometric mean particle 
diameter, while γ=ln(σgN), the natural log of the number weighted 
geometric standard deviation. The expected value of a particle’s 
radius is exp(μ+γ2/2). The mass of a particle scales according to 
its radius cubed, meaning mass is lognormally distributed with 
mean 3μ and standard deviation 3γ. Assuming a constant density 
ρ, the expected mass of a particle is:

Equation 4.

Shown in Equation 5, the average number flux of impacts (n) 
is the mass flux divided by the expected mass per particle. 
Similar to m, n can be considered constant within control limits. 
n is inversely proportional to the mean radius cubed, with a 
conspicuous additional inverse dependence on γ. 

Equation 5.

To illustrate the consequences of this dependence to the relative 
uncertainty in impact coverage, consider the case where                     
n≈n tc∙Apart particles are assigned random impact locations 
within an area of size Apart. For a measurement area A that is a 
subsection of Apart, the probability that any particle is contained 
within is p0= A/Apart, and the probability a particle is excluded is 
q=1-p0.  The probability that the measured number of particles 
within A (nA) is exactly equal to k is equal to the number of ways 
to choose k particles from n, multiplied by p   (the probability 
that all k particles are within A) and qn-k(the probability that all 
other particles are not within A), shown in Equation 6.

Equation 6.

This is known as the binomial distribution, a fundamental 
construct in probability theory used to describe the number 
of successes and failures in experiments with independent 
and identically distributed trials. When the total number of 
impacting particles is large, the binomial distribution converges 
to a Poisson distribution (Ross, 1996):

Equation 7.

Where λ = n Atc. The Poisson distribution has an expected value 
and variance of E[nA] = Var[nA]=λ, and is commonly used to 
model counting processes. Applied to peening, this mathemat-
ical formulation provides an exact probability distribution for 
the number of particles contained within a region based on 
operational parameters and media size. 
	 Leveraging the equality of expected value and variance of a 
Poisson distribution, Equation 3 becomes:

	 The definition of variance states that:
 

 (Ross, 1996), leading to a simplified expression for Var[MA]:

Equation 8.

Applying the expected value of the Poisson distribution for NA 
and the second moment                  

of the lognormal size distribution leads to:

Equation 9.

Substituting Equation 5 yields an expression for Var[MA] in 
terms of m:

Equation 10.

Simplifying to a final expression for Var[MA]:

Equation 11.

E[MA] is simply equal to mAtc, leading to a closed form expression 
for relative standard deviation:

Equation 12.

To validate the Poisson distributions application to predicting 
peening mass flux uniformity, consider three media size dis-
tributions for conditioned cut wire 32; 1) idealized monodis-
perse (μ= ln(463),γ = ln(1)), 2) as-manufactured (μ- ln(463),γ 
- ln(1.071)), and 3) working mix (μ- ln(359.2), γ - ln(1.422)). As-
manufactured and working mix media samples were obtained 
and measured with DIA as part of a previous Purdue University 
School of Materials Engineering senior capstone project (Kelly, 
Keuneke, McLaughlin, & Schroader, 2021).  Linearized lognormal 
fits for both are summarized in Figure 2 (page 20). Overall, most 
working mix particles are smaller than the as-manufactured, 
though the working mix has a significantly broader distribution. 
	 Using those particle size distributions, a relatively simple 
Monte Carlo procedure can be performed to simulate impact 
coverage uniformity numerically. Assuming a constant mass 
flow rate of 20 kg/min, Apart is equal to 0.03 m2, and a tc of either 
10 or 50 s, each particle size distribution is repeatedly sampled 
on a number basis until the cumulative mass of media is greater 
than or equal to the product of mass flow rate and peening 
time. The sampled particles are then assigned random (x,y) 
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impact locations within a region of size Apart. Apart is recursively 
subdivided into grids of progressively smaller measurement 
regions, enabling direct calculation of the distribution of MA 
at each measurement size. The standard deviation of the set of 
MA values divided by its mean yields RSD[MA] as a function of 
measurement area. The use of a number-weighted distribution 
in area equivalent radius is critical to this exercise, ensuring that 
all particles have the same likelihood of impinging a component, 
regardless of size.
	 Shown in Figure 3 is a comparison between Poisson process 
predictions for RSD[MA] with Monte Carlo results, demonstrat-
ing a clear agreement between the two. In capturing variability 
in impact coverage, the results of this study suggest that mono-
disperse is an appropriate approximation for as-manufac-
tured media, while the breadth of the working-mix distribu-
tion contributed to a lower number-flux of impacts on average 
and hence, greater variability in impact coverage across scales of 
scrutiny.

 

Figure 3. Comparison of analytical prediction with Monte 
Carlo results for relative variability in cumulative mass as a 

function of area.

In standard peening processes, with controlled centerlines of 
air pressure, feed rate, and working mix media size, this model 
provides insight to the effective impact distribution at relevant 
scales ranging from slightly larger than the media size up to 

full parts. It is important to note the limitations of this Poisson 
process-based model with respect to operational parameters. 
The Poisson approximation of the binomial distribution relies 
on a large total number of impacts. Though divergence from the 
analytical prediction was not observed in this study, processes 
with especially low average mass fluxes coupled with broad 
particle size distributions could violate the assumption of 
independence between the number of impacting particles and 
the mass of each particle. Additionally, this model assumes that 
particles are point masses; quantifying a spatial distribution of 
mass at sub-dimple length scales can be ambiguous. 

Conclusions
The Poisson model can provide a starting point for predicting 
variability in residual stress fields across treated surfaces. Critical 
features of many peened components, for example axle gear roots 
and turbine leading edges, fall between the component size and a 
dimple diameter, the ideal range for Poisson model validity. The 
Poisson model describes coverage as a counting process; hence 
it is important to obtain number-based media size distribu-
tions, for example using DIA. Results suggest that peening time, 
mass flow rate, and media size can be used to control uniformity 
of coverage. We seek to use this model to aid in the design of 
peening processes that achieve desired stress profiles minimizing 
variability in critical regions of a component. More broadly, we 
see this work as a starting point toward the development of 
advanced statistical tools for linking operational parameters 
and transient particle size and shape distributions to spatial and 
temporal uniformity in both surface topography and residual 
stress fields.
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Figure 2. Linearized lognormal fits for area equivalent radius 
of as-manufactured and working mix CCW32 media.
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